

Energy Balance for a Moving Defect in a Peridynamic Solid

Stewart A. Silling Richard B. Lehoucq

Sandia National Laboratories Albuquerque, New Mexico, USA

16th US National Congress of Theoretical and Applied Mechanics State College, PA

July 1, 2010

Acknowledgment: Prof. Florin Bobaru & students

Energy flow into a defect: Results from the local theory

- The energy dissipated by a moving defect can be obtained from the elastic fields far from the defect.
 - · Don't need to know all the small-scale details.
- Eshelby (1956): 3D energy-momentum tensor and its surface integral.
- Rice (1968): 2D J-integral and its relation to plastic flow.
- Knowles & Sternberg (1972): Obtained J-integral from Noether's theorem.

$$J = \int_{\Gamma} \left[W n_2 - \boldsymbol{\tau} \cdot \frac{\partial \mathbf{u}}{\partial x_1} \right] d\ell$$

energy per unit crack area"driving force" on defect

This talk: Find a J-integral in peridynamics.

Peridynamics basics: Horizon and family

ullet Any point ${\bf x}$ interacts directly with other points within a finite distance δ called the "horizon."

• The material within a distance δ of x is called the "family" of x,

Bond forces

- A force density $\mathbf{t}(\mathbf{x}',\mathbf{x})$ is associated with each bond in the family of \mathbf{x} .
- Dimensions of t are force/volume².
- t is not necessarily parallel to the deformed bond.

Bond forces are determined by the collective deformation of the family

ullet The deformation state $\underline{\mathbf{Y}}$ is the function that maps bonds to their deformed images.

$$\mathbf{y}' - \mathbf{y} = \underline{\mathbf{Y}}\langle \mathbf{x}' - \mathbf{x} \rangle.$$

ullet The force state $\underline{\mathbf{T}}$ is the function that maps bonds to bond forces.

$$\mathbf{t}(\mathbf{x}',\mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{x}' - \mathbf{x} \rangle.$$

ullet The constitutive model $\hat{\mathbf{T}}$ relates \mathbf{T} and \mathbf{Y} :

Peridynamic equation of motion

ullet At any point ${\bf x}$ in the reference configuration of the body ${\cal B}$:

$$\rho(\mathbf{x})\ddot{\mathbf{y}}(\mathbf{x},t) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{x}',\mathbf{x},t) - \mathbf{t}(\mathbf{x},\mathbf{x}',t) \right) \, dV' + \mathbf{b}(\mathbf{x},t)$$
Dual force density $\mathbf{f}(\mathbf{x}',\mathbf{x},t)$

Energy balance at a point

• First law expression for peridynamics:

$$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + h + r$$

where $\varepsilon=$ internal energy density, h=heat transport rate, r=energy source rate.

ullet Dot product represents, at any x,

$$\underline{\mathbf{T}} \bullet \underline{\dot{\mathbf{Y}}} = \int_{\mathcal{H}} \mathbf{t}(\mathbf{x}', \mathbf{x}, t) \cdot (\mathbf{v}(\mathbf{x}', t) - \mathbf{v}(\mathbf{x}, t)) \ dV'$$

- Assume an adiabatic, source-free process: h = r = 0.
- The term $\underline{\mathbf{T}} \bullet \underline{\mathbf{Y}}$ is called the *absorbed power density* (peridynamic version of stress power $\sigma \cdot \dot{\mathbf{F}}$).

Energy balance for a subregion

ullet Global first law expression in peridynamics for a subregion $\mathcal{P}\subset\mathcal{B}$:

$$\frac{d}{dt} \int_{\mathcal{P}} \left(\varepsilon + \frac{\rho \mathbf{v} \cdot \mathbf{v}}{2} \right) \ dV = \int_{\mathcal{P}} \int_{\mathcal{B} \setminus \mathcal{P}} \left(\mathbf{t} \cdot \mathbf{v}' - \mathbf{t}' \cdot \mathbf{v} \right) \ dV' \ dV + \int_{\mathcal{P}} (h + r) \ dV + \int_{\mathcal{P}} \mathbf{b} \cdot \mathbf{v} \ dV$$

where following short notation is used:

$$\mathbf{t} = \mathbf{t}(\mathbf{x}', \mathbf{x}, t), \qquad \mathbf{v} = \mathbf{v}(\mathbf{x}, t)$$
 $\mathbf{t}' = \mathbf{t}(\mathbf{x}, \mathbf{x}', t), \qquad \mathbf{v}' = \mathbf{v}(\mathbf{x}', t).$

Free energy and the force state

• Free energy is defined by

$$\psi = \varepsilon - \theta \eta$$

where θ =temperature, η =entropy density.

ullet Assume ψ has the following dependencies:

$$\psi(\underline{\mathbf{Y}}, \theta, \underline{\phi})$$

where ϕ is the damage state (next slide).

• Can show by Coleman-Noll procedure that

$$\underline{\mathbf{T}} = \psi_{\underline{\mathbf{Y}}}$$

where $\psi_{\mathbf{Y}}$ is the Fréchet derivative of ψ with respect to $\underline{\mathbf{Y}}$.

Damage state

ullet The damage state increases monotonically for each bond ${f x}'-{f x}$:

$$\underline{\dot{\phi}}\langle \mathbf{x}' - \mathbf{x} \rangle \ge 0, \qquad 0 \le \underline{\phi}\langle \mathbf{x}' - \mathbf{x} \rangle \le 1.$$

according to some damage evolution law:

$$\underline{\phi} = \underline{D}(\underline{\mathbf{Y}}, \underline{\dot{\mathbf{Y}}}, \dots).$$

- Details of this are not important for present purposes.
- Simplest model: bond breakage.

Damaged bond: $\frac{\phi\langle \mathbf{x'}-\mathbf{x}\rangle>0}{\mathbf{y'}}$

Bond breakage and progressive failure

Damage leads to fracture

Tearing instability

Balloon pop

Peeling

Main advantage of peridynamics for crack modeling

Crack growth is autonomous: same field equations apply on or off of a discontinuity.

Entropy production and energy dissipation

• Again using Coleman-Noll, the rate of entropy production is

$$\dot{\eta} = \frac{\dot{\psi}^{\mathrm{d}}}{ heta}$$

where the rate of energy dissipation is given by

$$\dot{\psi}^{d} = -\psi_{\underline{\phi}} \bullet \dot{\underline{\phi}}$$

$$:= -\int_{\mathcal{H}} \psi_{\underline{\phi}} \langle \mathbf{x}' - \mathbf{x} \rangle \dot{\underline{\phi}} \langle \mathbf{x}' - \mathbf{x} \rangle dV'$$

where ϕ is the Fréchet derivative of ψ with respect to ϕ .

• For an isothermal process, therefore

$$\dot{\psi} = \dot{\varepsilon} - \theta \dot{\eta}$$

so that

$$\dot{\psi} = \dot{\varepsilon} - \dot{\psi}^{\mathrm{d}}.$$

Analyze dissipation of energy near a defect

- Assume a homogeneous body.
- Assume a constant defect velocity .
- ullet \mathcal{P} moves with the defect through the reference configuration \mathcal{B} .

Steady-state motion

Assumed motion is

$$\mathbf{y}(\mathbf{x},t) = \mathbf{x} + \mathbf{u}(\mathbf{x} - \mathbf{V}t)$$

where \mathbf{u} is a given function and $|\mathbf{V}|$ is small.

Free energy balance

• Reynolds transport theorem implies

$$\frac{d}{dt} \int_{\mathcal{P}} \psi \ dV = \int_{\mathcal{P}} \dot{\psi} \ dV + \int_{\partial \mathcal{P}} \psi \mathbf{V} \cdot \mathbf{n} \ dA$$

but steady-state implies

$$\frac{d}{dt} \int_{\mathcal{P}} \psi \ dV = 0.$$

Use first law to compute nonlocal work done across the boundary

Recall

$$\dot{\psi} = \dot{\varepsilon} - \dot{\psi}^{\mathrm{d}}$$
.

hence

$$\int_{\mathcal{P}} \left(\dot{\varepsilon} - \dot{\psi}^{\mathrm{d}} \right) \, dV + \int_{\partial \mathcal{P}} \psi \mathbf{V} \cdot \mathbf{n} \, dA = 0$$

• Global first law under present assumptions reduces to

$$\int_{\mathcal{P}} \dot{\varepsilon} \ dV = \int_{\mathcal{P}} \int_{\mathcal{B} \setminus \mathcal{P}} \left(\mathbf{t} \cdot \mathbf{v}' - \mathbf{t}' \cdot \mathbf{v} \right) \ dV' \ dV$$

$$\mathbf{u}_{\mathbf{x}} = \operatorname{grad} \mathbf{u}(\mathbf{x})$$

$$\mathbf{u}'_{\mathbf{x}} = \operatorname{grad} \mathbf{u}(\mathbf{x}')$$

Total rate of energy dissipation

• Eliminate $\dot{\varepsilon}$ term to find

$$\int_{\mathcal{P}} \dot{\psi^{\mathrm{d}}} \ dV = \int_{\mathcal{P}} \int_{\mathcal{B} \setminus \mathcal{P}} \left(\mathbf{t} \cdot (-\mathbf{u}_{\mathbf{x}}' \mathbf{V}) - \mathbf{t}' \cdot (-\mathbf{u}_{\mathbf{x}} \mathbf{V}) \right) \ dV' \ dV + \int_{\partial \mathcal{P}} \psi \mathbf{V} \cdot \mathbf{n} \ dA$$

or

$$\int_{\mathcal{D}} \dot{\psi^{\mathrm{d}}} \ dV = \mathbf{J} \cdot \mathbf{V}$$

where

$$\mathbf{J} = \int_{\mathcal{P}} \int_{\mathcal{B} \setminus \mathcal{P}} \left(\mathbf{u}_{\mathbf{x}}^T \mathbf{t}' - (\mathbf{u}_{\mathbf{x}}')^T \mathbf{t} \right) \, dV' \, dV + \int_{\partial \mathcal{P}} \psi \mathbf{n} \, dA$$
 Peridynamic J-integral (3D)

Integrand is nonzero only if x and x' are sufficiently close to $\partial \mathcal{P}$.

Crack in a plate

- ullet Apply to a plate of thickness eta. \mathcal{A} is the interior of a curve in the plane.
- Assume crack grows in the x_1 direction.

$$J_1 = \beta^2 \int_{\mathcal{A}} \int_{\mathcal{B} \setminus \mathcal{A}} \left(\frac{\partial \mathbf{u}}{\partial x_1} \cdot \mathbf{t}' - \frac{\partial \mathbf{u}'}{\partial x_1} \cdot \mathbf{t} \right) dA' dA + \beta \int_{\partial \mathcal{A}} \psi n_2 ds$$

Crack in a plate: Limit of small horizon

Small horizon:

$$\frac{\partial \mathbf{u}}{\partial x_1} \approx \frac{\partial \mathbf{u}'}{\partial x_1}$$

hence

$$J_{1} \approx \beta^{2} \int_{\mathcal{A}} \frac{\partial \mathbf{u}}{\partial x_{1}} \cdot \left[\int_{\mathcal{B} \setminus \mathcal{A}} (\mathbf{t}' - \mathbf{t}) \, dA' \right] \, dA + \beta \int_{\partial \mathcal{A}} \psi n_{2} \, ds$$
$$= \beta \int_{\partial \mathcal{A}} \left[-\frac{\partial \mathbf{u}}{\partial x_{1}} \cdot \boldsymbol{\tau} \, ds + \psi n_{2} \right] \, ds$$

where τ is the traction vector on $\partial \mathcal{A}$.

• This is the same as Rice's J-integral in the standard theory (except for factor of β).

Summary

$$\mathbf{J} = \int_{\mathcal{P}} \int_{\mathcal{B} \setminus \mathcal{P}} \left(\mathbf{u}_{\mathbf{x}}^{T} \mathbf{t}' - (\mathbf{u}_{\mathbf{x}}')^{T} \mathbf{t} \right) dV' dV + \int_{\partial \mathcal{P}} \psi \mathbf{n} dA$$

- Directly computed the free energy dissipated by a defect based on the first law and on steady-state assumptions.
- Did not need to assume anything about the physical dissipative mechanism.
- Did not assume that dissipation is confined to a small process zone.
- ullet Defect may or may not involve a discontinuity in ${f u}$ (consistent with the "spirit of peridynamics").
- For more info: SS & RL, "Peridynamic Theory of Solid Mechanics," to appear in *Advances in Applied Mechanics*, vol. 44 (2010).

